Frequency Domain Sampling DFT

1. If $x(n)$ is a finite duration sequence of length L, then the discrete Fourier transform $X(k)$ of $x(n)$ is given as:

$$
\begin{aligned}
& N-1 \\
& \text { a) } \\
& \underset{\substack{n=0 \\
N-1}}{\boldsymbol{x}(n) e^{\frac{-j 2 \pi k n}{N}}(L<N)(k=0,1,2,3 \ldots N-1)} \\
& \text { b) } \left.\quad x(n) e^{\frac{j 2 \pi k n}{N}(L}<N\right)(k=0,1,2,3 \ldots N-1) \\
& \begin{array}{c}
n=0 \\
N-1
\end{array} \\
& \text { c) } \quad x(n) e^{\frac{j 2 \pi k n}{N}(L>N)(k=0,1,2,3 \ldots N-1)} \\
& \begin{array}{l}
n=0 \\
N-1
\end{array} \\
& \text { d) } \underset{n=0}{x(n) e}{ }^{\frac{-j 2 \pi k n}{N}}(L>N)(k=0,1,2,3 \ldots N-1)
\end{aligned}
$$

Answer: a
Explanation: If $x(n)$ is a finite duration sequence of length L, then the Fourier transform of $x(n)$ is given as

If we sample $X(\omega)$ at equally spaced frequencies $\omega=2 \pi \mathrm{k} / \mathrm{N}, \mathrm{k}=0,1,2 \ldots \mathrm{~N}-1$ where $\mathrm{N}>\mathrm{L}$, the resultant samples are

$$
X K=\sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

2. If $X(k)$ discrete Fourier transform of $x(n)$, then the inverse discrete Fourier transform of $\mathrm{X}(\mathrm{k})$ is:
a) $\frac{1}{N}{ }_{k=0}^{N-1} X e^{\frac{-j 2 \pi k n}{N}}$
b) $X K e \quad \frac{N-1}{N}$
c) $X(K) e^{\frac{j 2 \pi k n}{N}}$
d) $\frac{1}{N}_{k=0}^{N-1} X(K) e^{\frac{j 2 \pi k n}{N}}$

Answer: d

Explanation: If $X(k)$ discrete Fourier transform of $x(n)$, then the inverse discrete Fourier transform of $\mathrm{X}(\mathrm{k})$ is given as

$$
x n=\frac{1}{N}_{k=0}^{N-1} X(K) e^{\frac{j 2 \pi k n}{N}}
$$

Frequency Domain Sampling DFT

3. The Nth rot of unity W_{N} is given as:
a) $\mathrm{e}^{\mathrm{j} 2 \pi \mathrm{~N}}$
b) $e^{-\mathrm{j} 2 \pi \mathrm{~N}}$
c) $e^{-\mathrm{j} 2 \pi / \mathrm{N}}$
d) $e^{\mathrm{j} 2 \pi / \mathrm{N}}$

Answer: c
Explanation: We know that the Discrete Fourier transform of a signal $x(n)$ is given as

Thus we get Nth rot of unity $\mathbf{W}_{\mathbf{N}}=\mathbf{e}^{-\mathrm{j} 2 \pi / N}$
4. Which of the following is true regarding the number of computations requires to compute an N-point DFT?
a) N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}-1)$ complex additions
b) N^{2} complex additions and $\mathrm{N}(\mathrm{N}-1)$ complex multiplications
c) N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}+1)$ complex additions
d) N^{2} complex additions and $\mathrm{N}(\mathrm{N}+1)$ complex multiplications

Answer: a

Explanation: The formula for calculating N point DFT is given as

$$
X K=x^{N-1}=e^{\frac{-j 2 \pi k n}{N}}
$$

$$
n=\mathbf{0}
$$

From the formula given at every step of computing we are performing N complex multiplications and N-1 complex additions. So, in a total to perform N-point DFT we perform N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}-1)$ complex additions.
5. Which of the following is true?
a) $W_{N^{*}}=\frac{1}{N} W_{N}^{-1}$
b) $W_{N}{ }^{-1}=\frac{1}{N} W_{N}{ }^{*}$
c) $W_{N^{-1}}=W_{N^{*}}$
d) None of the mentioned

Answer: b
Explanation: If XN represents the N point DFT of the sequence xN in the matrix form, then we know that

Frequency Domain Sampling DFT

$$
\mathrm{X}_{\mathrm{N}}=\mathrm{W}_{\mathrm{N}} \mathrm{X}_{\mathrm{N}}
$$

By pre-multiplying both side by W_{N}, We get

$$
\mathbf{x}_{\mathrm{N}}=W_{N}^{-1} \mathbf{X}_{\mathbf{N}}
$$

But we know that the inverse DFT of X_{N} is defined as,

$$
\mathbf{x}_{\mathrm{N}}=\frac{1}{N} \boldsymbol{W}^{*} \underset{N}{\mathbf{X}_{\mathrm{N}}}
$$

Thus by comparing above two equations, we get

$$
W_{N}^{-1}=\frac{1}{N} W_{N}^{*}
$$

6. What is the DFT of the four point sequence $x(n)=\{0,1,2,3\}$?
a) $\{6,-2+2 \mathrm{j}-2,-2-2 \mathrm{j}\}$
b) $\{6,-2-2 \mathrm{j}, 2,-2+2 \mathrm{j}\}$
c) $\{6,-2+2 \mathrm{j},-2,-2-2 \mathrm{j}\}$
d) $\{6,-2-2 \mathrm{j},-2,-2+2 \mathrm{j}\}$

Answer: c

Explanation: The first step is to determine the matrix W4. By exploiting the periodicity property of W4 and the symmetry property

$$
\mathbf{W}^{k+N / 2}=-\mathbf{W}_{N}^{k}
$$

The matrix W_{4} may be expressed as

$$
W_{4}=\left[\begin{array}{llll}
W_{4}{ }^{0} & W_{4}{ }^{0} & W_{4}{ }^{0} & W_{4}{ }^{0} \\
W_{4}{ }^{0} & W_{4}{ }^{1} & W_{4}{ }^{2} & W_{4}{ }^{3} \\
W_{4}{ }^{0} & W_{4}{ }^{2} & W_{4}{ }^{4} & W_{4}{ }^{6} \\
W_{4}{ }^{0} & W_{4}{ }^{3} & W_{4}{ }^{6} & W_{4}{ }^{9}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}{ }^{0} & W_{4}{ }^{0} & W_{4}{ }^{0} & W_{4}{ }^{0} \\
W_{4}{ }^{0} & W_{4}{ }^{1} & W_{4}{ }^{2} & W_{4}{ }^{3} \\
W_{4}{ }^{0} & W_{4}{ }^{2} & W_{4}{ }^{0} & W_{4}{ }^{2} \\
W_{4}{ }^{0} & W_{4}{ }^{3} & W_{4}{ }^{2} & W_{4}{ }^{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]
$$

7. If $\mathrm{X}(\mathrm{k})$ is the N point DFT of a sequence whose Fourier series coefficients is given by c_{k}, then which of the following is true?
a) $X(k)=N c_{k}$
b) $X(k)=c_{k} / N$
c) $X(k)=N / c_{k}$
d) None of the these

Answer: a
Explanation: The Fourier series coefficients are given by the expression

Frequency Domain Sampling DFT

$$
\begin{aligned}
& c_{k} 1_{N}^{N-1} x n e e_{n=0}^{\frac{-j 2 d n}{N}} \\
& c_{k}=\frac{1}{N} X(K) \\
& X(K)=\boldsymbol{N} \boldsymbol{c}_{\boldsymbol{k}}
\end{aligned}
$$

8. What is the DFT of the four point sequence $x(n)=\{0,1,2,3\}$?
a) $\{6,-2+2 \mathrm{j}-2,-2-2 \mathrm{j}\}$
b) $\{6,-2-2 \mathrm{j}, 2,-2+2 \mathrm{j}\}$
c) $\{6,-2-2 \mathrm{j},-2,-2+2 \mathrm{j}\}$
d) $\{6,-2+2 \mathrm{j},-2,-2-2 \mathrm{j}\}$

Answer: d
Answer: Given $x(n)=\{0,1,2,3\}$
We know that the 4-point DFT of the above given sequence is given by the expression

$$
X K=x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

In this case $\mathrm{N}=4$
$\Rightarrow>X(0)=6, X(1)=-2+2 j, X(2)=-2, X(3)=-2-2 j$.
9. If $W_{4}{ }^{100}=W_{x}^{200}$, then what is the value of x ?
a) 2
b) 4
c) 8
d) 16

Answer: c
Explanation: We know that according to the periodicity and symmetry property,
$\frac{100}{4}=\frac{200}{x}$
$x=\frac{200}{100} * 4$

$$
x=8
$$

